2A2C Introduction to Control Theory 3

Kostas Margellos
Michaelmas Term Term 2020 kostas.margellos@eng.ox.ac.uk

Note

With grateful acknowledgement to Mark Cannon for making material from Hilary Term 2017 available. Any remaining errors or typos should be referred to kostas.margellos@eng.ox.ac.uk

Questions

1. An aircraft autopilot uses the following continuous time PID controller to control roll angle:

$$
u(t)=K\left(e(t)+\frac{1}{T_{I}} \int^{t} e(\tau) \mathrm{d} \tau+T_{d} \dot{e}(t)\right), \quad e(t)=r(t)-y(t)
$$

with gains $K=2, T_{d}=0.05$ and $T_{i}=1$, where $u(t)$ is the control signal, $y(t)$ is the roll angle, $r(t)$ is a reference signal. The controller is to be implemented using a digital control system, hence it is discretized using a sampling interval T.
(a) Using Euler's backward derivative approximation, provide an expression for the control input u_{k} at the k-th sampling instant in terms of the samples of e and u and the sampling interval T.
(b) Determine the z-transform transfer function of the controller for $T=$ 0.5 .
2. If $F(z)=\mathcal{Z}\{f(k T)\}=\sum_{k=0}^{\infty} f(k T) z^{-k}$, show that:
(a) $\mathcal{Z}\{f(k T-n T)\}=z^{-n} F(z)$, for $n>0$
(b) $\mathcal{Z}\left\{\alpha f_{1}(k T)+\beta f_{2}(k T)\right\}=\alpha F_{1}(z)+\beta F_{2}(z)$
(c) $\mathcal{Z}\{k f(k T)\}=-z \frac{\mathrm{~d}}{\mathrm{~d} z} \mathcal{Z}\{f(k T)\}$.
3. State the signals that have the following Laplace transforms and then find from first principles their z-transforms after sampling with period T.
(a) $\frac{1}{s}$
(b) $\frac{a}{s(s+a)}$
(c) $\frac{2}{s^{3}}$
(d) $\frac{e^{-s h}}{s+a}$

Check your answer to (d) for $h=T$ and explain why it is discontinuous at $h=0$.
Hint: In part (d) consider the sample corresponding to $k=0$.
4. (a) Compute the z-transform of $x_{k}=a^{k}$, where $k \geq 0, a>0$.
(b) Compute the z-transform of $x_{k}=\cos a k$, where $k \geq 0$, and a is an arbitrary constant.
(c) Compute the inverse z-transform of $X(z)=\frac{8 z-19}{(z-2)(z-3)}$.
(d) Compute the inverse z-transform of $X(z)=\frac{0.2 z^{-1}}{1-0.5 z^{-1}}$.
5. A digital-to-analogue converter (DAC) is updated every T seconds. The DAC is connected via a zero-order hold to a current amplifier with a gain $k_{A} \mathrm{~A} / \mathrm{V}$ which in turn drives a motor with inertia $J \mathrm{~kg} \mathrm{~m}^{2}$ and torque constant $k_{T} \mathrm{Nm} / \mathrm{A}$. A tacho-generator with a gain of $k_{V} \mathrm{~V} /\left(\mathrm{rad} \mathrm{s}^{-1}\right)$ is sampled through an ADC synchronously with the DAC. Calculate the pulse transfer function $G(z)$ of the system seen by the computer.
6. The computer in Question 5 takes a time τ to calculate its control action and the DAC is therefore updated a time τ after the ADC sampling instant, where $0<\tau<T$. Calculate the z-transform of the continuous time system with this extra delay incorporated. Check your answer for the cases $\tau=T$ and as $\tau \rightarrow 0$.
7. Show that the mapping $z=e^{s T}$ maps strips in the left half of the s-plane into the unit circle in the z-plane. Find the locus of $z=e^{s T}$ in the z-plane when $s=\sigma+j \omega$ and:
(a) σ is constant;
(b) ω is constant.
8. (a) Derive expressions for the images in the z-plane of the s-plane poles with natural frequency ω_{0} and damping ratio ζ, under the mapping $z=e^{s T}$.
(b) Determine the damping ratio and natural frequency of the z-plane poles at $z=\frac{1}{4} \pm j \frac{\sqrt{3}}{4}$ if the sampling interval is T.
(c) Consider a closed loop system described by the transfer function

$$
\frac{Y(z)}{R(z)}=\frac{3 z}{z^{2}-0.5 z+0.25}
$$

Compute the steady state value and the settling time of its response to a unit step. The sampling interval is $T=1$ second.
9. (a) Consider the continuous time linear system

$$
\begin{aligned}
\dot{x}(t) & =\bar{A} x(t)+\bar{B} u(t) \\
y(t) & =\bar{C} x(t)+\bar{D} u(t)
\end{aligned}
$$

where

$$
\bar{A}=\left[\begin{array}{cc}
0 & 2 \\
-1 & -3
\end{array}\right], \bar{B}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \bar{C}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \bar{D}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Given a fixed sampling period T, compute the matrices (A, B, C, D) of the state space description of the associated sampled data linear system.
(b) Consider a discrete time linear system in state space form, whose A matrix is given by

$$
A=\left[\begin{array}{cc}
0 & 2 \\
-1 & -3
\end{array}\right] .
$$

Compute the zero input transition of the system's solution when the initial state is $x_{0}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$.
10. Consider a continuous time linear system governed by the differential equation

$$
\dot{x}(t)=A x(t),
$$

where $A \in \mathbb{R}^{n \times n}$ is assumed to be diaognalizable. Using Euler's forward approximation to first order derivatives, we have that $\dot{x}(t) \approx \frac{x_{k+1}-x_{k}}{T}$, where T is the time-step size. This suggests the following discrete time approximation

$$
\frac{x_{k+1}-x_{k}}{T}=A x_{k} \Leftrightarrow x_{k+1}=(I+A T) x_{k}
$$

where I is an $n \times n$ identity matrix.
(a) Show that for all $i=1, \ldots, n$, if λ_{i} is an eigenvalue of A associated with the eigenvector w_{i}, then $1+\lambda_{i} T$ is an eigenvalue of $I+A T$ associated with the same eigenvector.
(b) Show that the solution of the system is given by

$$
x_{k}=W(I+\Lambda T)^{k} W^{-1} x_{0},
$$

where W is a matrix whose columns are the eigenvectors of A, Λ is a diagonal matrix whose diagonal entries are the eigenvalues of A, and x_{0} is the initial state.
(c) Provide a condition for T such that the discrete time approximation is asymptotically stable.

Answers to selected questions

1. (a). Using backwards differences to approximate derivatives:

$$
u_{k}=K\left(1+\frac{T_{d}}{T}+\frac{T}{T_{i}}\right) e_{k}-K\left(1+2 \frac{T_{d}}{T}\right) e_{k-1}+K \frac{T_{d}}{T} e_{k-2}+u_{k-1}
$$

(b). $\frac{U(z)}{E(z)}=\frac{3.2 z^{2}-2.4 z+0.2}{z(z-1)}$ if $T=0.5 \mathrm{sec}$
3. (a). $\frac{z}{z-1}$
(b). $z \frac{\left(1-e^{-a T}\right)}{(z-1)\left(z-e^{-a T}\right)}$
(c). $T^{2} \frac{z(z+1)}{(z-1)^{3}}$
(d). $\frac{e^{-a(T-h)}}{z-e^{-a T}}$
4. (a). $\frac{z}{z-a}$
(b). $\frac{z(z-\cos a)}{z^{2}-2 z \cos a+1}$
(c). $-\frac{19}{6} \delta_{k}+\left(\frac{3}{2} 2^{k}+\frac{5}{3} 3^{k}\right) \mathcal{U}_{k}$
(d). $0,0.2,0.1,0.05, \ldots$
5. $\frac{k_{A} k_{T} k_{V} T}{J(z-1)}$
6. $\frac{k_{A} k_{T} k_{V}(T z-\tau z+\tau)}{J z(z-1)}$
8. (a). $z=r e^{j \theta}$ with $r=e^{-\zeta \omega_{0} T}, \theta=\omega_{0} T \sqrt{1-\zeta^{2}}$
(b). $\omega_{0}=\frac{1.256}{T}, \zeta=0.552$.
(c). Steady state value: $y_{s s}=4$; Settling time: $T_{s}=6.63$ seconds.
9. (a). $A=\left[\begin{array}{ll}2 e^{-T}-e^{-2 T} & 2 e^{-T}-2 e^{-2 T} \\ -e^{-T}+e^{-2 T} & -e^{-T}+2 e^{-2 T}\end{array}\right]$.
(b). $x_{k}=(-1)^{k+1}\left[\begin{array}{c}2 \\ -1\end{array}\right]$.

